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Background and Contents
• Development of new materials is an key 
issue to achieve innovative concepts of 
JSFR. R&Ds are being performed in an 
“All Japan” framework.

• Core materials
– Oxide Dispersed Strengthened steel (ODS)

• Structural materials
– 316FR (Low carbon nitrogen added 316SS)
– Modified 9Cr-1Mo steel



3

JSFR - Innovative technologies -

Reactor Vessel

Steam 
Generators

Primary
Pump/IHX

Secondary 
Pump Prevention of Sodium 

Fire/Reaction:
Double-walled Sodium
Piping

Prevention of Sodium Prevention of Sodium 
Fire/Reaction:Fire/Reaction:
Double-walled Sodium
Piping

Enhanced Reactor Safety
-Passive safety by self actuated 
shutdown system and natural 
circulation decay heat removal
-Recriticality-free core
-Seismic isolation 

Enhanced Reactor SafetyEnhanced Reactor Safety
-Passive safety by self actuated 
shutdown system and natural 
circulation decay heat removal
-Recriticality-free core
-Seismic isolation 

Cost Competitiveness
-Simplified HTS with 2-Loop 
Arrangement
-Short piping with Modified 
9Cr-1Mo steel
- Integrated heat exchanger and 
primary pump
-Compact and simple reactor 
block with 316FR
-Fuel handling system
-SC Containment structure

Cost CompetitivenessCost Competitiveness
-Simplified HTS with 2-Loop 
Arrangement
-Short piping with Modified 
9Cr-1Mo steel
- Integrated heat exchanger and 
primary pump
-Compact and simple reactor 
block with 316FR
-Fuel handling system
-SC Containment structure

Enhanced Availability
-High bun-up fuel with ODS steel 
cladding

Enhanced AvailabilityEnhanced Availability
-High bun-up fuel with ODS steel 
cladding

High Reliability: 
Technologies for Inspection 
and repair tech under sodium

High Reliability: High Reliability: 
Technologies for Inspection 
and repair tech under sodium



Core materials



Target of ODS steel cladding developmentTarget of ODS steel cladding development
Target PerformanceTarget Performance

■■■■■■■■High Burnup
⇒⇒⇒⇒⇒⇒⇒⇒Discharge Discharge average burnup : 150 GWd/t
- Peak burnup : ~250 ~250 GWd/tGWd/t
- Peak neutron dose : ~250 ~250 dpadpa

■■■■■■■■High Temperature
⇒⇒⇒⇒⇒⇒⇒⇒Coolant outlet temperature : 823 K
- Cladding mid-wall temperature : ~973 K~973 K

ODS Steel CladdingODS Steel Cladding
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ODSODSODS
High temperature strengthHigh temperature strength

Radiation resistanceRadiation resistance

- Ultimate tensile strength (UTS) : >300 >300 MPaMPa (973 K)
- Uniform elongation (UE) : >1%>1%
- Internal creep rupture strength : 120 120 MPaMPa (973 K×104 hr)



ODS Steel ODS Steel 
cladding tubecladding tube

Handling Head: SUS316Handling Head: SUS316

Entrance Nozzle: SUS316Entrance Nozzle: SUS316ODS steel end plugODS steel end plug

ODS Steel end plugODS Steel end plug

Blanket Fuel Pellets (Blanket Fuel Pellets (UOUO22) ) 

Core Fuel Pellets (Core Fuel Pellets (MOXMOX))

Basic structure of fuel pin and subassemblyBasic structure of fuel pin and subassembly
Fuel PinFuel Pin SubassemblySubassembly

Core Support Structure:Core Support Structure:
SUS316 (316FR)SUS316 (316FR)

Welding

Welding

PNCPNC--FMSFMS
ductduct



9Cr9Cr--MartensiticMartensitic
=> Fabrication, Irradiation  Resistance=> Fabrication, Irradiation  Resistance

12Cr12Cr--Fully Fully FerriticFerritic
=> Corrosion Resistance=> Corrosion Resistance

M: Phase ControlM: Phase Control
S: Solution HardeningS: Solution Hardening

D: Dispersion HardeningD: Dispersion Hardening

200200μμμμμμμμmm 200200μμμμμμμμmm

Alloy design and phases for candidate ODS SteelsAlloy design and phases for candidate ODS Steels
mass%mass% CC CrCr WW TiTi YY22OO

33

Excess OExcess O

MM MM SS DD DD DD

9Cr9Cr--ODSODS 0.130.13 9.09.0 2.02.0 0.200.20 0.350.35 0.070.07
12Cr12Cr--ODSODS 0.030.03 12.012.0 2.02.0 0.260.26 0.230.23 0.070.07

EquiaxedEquiaxed MartensiticMartensitic GrainsGrains
++FerriticFerritic Grains (Grains (δδδδδδδδ)) Fully ReFully Re--crystallized crystallized FerriticFerritic GrainsGrains

Primary CandidatePrimary Candidate Secondary CandidateSecondary CandidateOxygen in YOxygen in Y22OO33≒≒≒≒≒≒≒≒Excess OxygenExcess Oxygen



GasGas--AtomizedAtomized
PrealloyedPrealloyed
PowderPowder
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PowderPowder

MechanicalMechanical
Alloying (MA)Alloying (MA) Hot Extrusion@ 1,150Hot Extrusion@ 1,150℃℃℃℃℃℃℃℃Raw PowdersRaw Powders CanningCanning

Degassing@400Degassing@400℃℃℃℃℃℃℃℃

Mother TubesMother Tubes

PD18mmPD18mm××××××××ID12mmID12mm××××××××

L180mmL180mm

Manufacturing process of ODS pinsManufacturing process of ODS pins

Cladding TubesCladding Tubes

OD8.5mmOD8.5mm××××××××ID7.5mmID7.5mm
××××××××L1,850mmL1,850mm4 Times4 Times

Intermediate/Intermediate/
Final HeatFinal Heat
TreatmentTreatment

Cold RollingCold Rolling

Powder Metallurgy ProcessPowder Metallurgy Process

Thin Wall Precise Tubing ProcessThin Wall Precise Tubing Process

PilgerPilger



OutOut--of pile creep rupture strength of ODS steelsof pile creep rupture strength of ODS steels

PNC316PNC316

PNCPNC--FMSFMS
Stress rangeStress range
used in JSFRused in JSFR

973K973K

Target

�High-strength ODS steel  cladding tube achieves the 
target out-of-pile creep strength,  i.e. 120 120 MPaMPa for 10,000 h for 10,000 h 
at 973 K.at 973 K.
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�No irradiation-induced degradation of creep rupture 
strength of 9Cr-ODS steel in contrast to the modified SUS316.



Structural materials
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Reactor Vessel
and Internals
= 316FR

IHX =
Mod.9Cr-1Mo

Steam 
generators

Secondary Pump
Mod.9Cr-1Mo

Primary and 
secondary piping 
systems =
Mod.9Cr-1Mo

Steam generator
(SG)

Tubesheet =
Mod.9Cr-1Mo

Vessel =
Mod.9Cr-1Mo

Tube =
Mod.9Cr-1Mo

CSEJ (Bellows) =
Mod.9Cr-1Mo

Target of structural materials 
development

Coolant Systems
= Mod.9Cr-1Mo

Reactor Vessel and 
internals = 316FR

• Coolant outlet temperature = 550 C
• Design life = 60 years



Current status and path forward
• R&Ds are progressing step by step towards 
licensing process:
– Material development
– Data acquisition and evaluation methods
– Development of fabrication technologies for 
products for the JSFR

– Codification for elevated temperature design
• R&Ds are based on the efforts being 
continued since before the FaCT project.  
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Material Development
• 316FR

– Developed in Japan within the specification of SUS316 (Type 316 
SS) of Japanese Industrial Standards (JIS) with stronger 
requirements for carbon, nitrogen and phosphorus.

– Material development completed.

• Mod.9Cr-1Mo steel
– Basically, ASTM/ASME code material (Grade 91)
– Material development completed
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Data acquisition and development of 
evaluation methods

• Key factor: 60-year design at 550 C
– Acquisition of material data

• Long-term creep, long-term creep-fatigue, 
environmental effects (aging, sodium, irradiation)

• Base metals, welded joints
– Modeling based on better understanding of 
degradation mechanisms 
• Creep-fatigue evaluation methods for welded joints
• Possible “Type IV damages (Mod.9Cr-1Mo steel)” at 
long-term regions taken into account

– Extrapolation based on models needs to be 
implemented in code development



Acquisition of long-term creep data
• Creep tests including long-terms ones have been 
performed and being continued, and data are 
stored in Database “SMAT” which has been 
developed by JAEA.

• Collaborative study with National Institute of 
Material Science (NIMS)
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Acquisition of long-term creep-
fatigue data and evaluation
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 Material : Mod.9Cr-1Mo
 Temperature : 550℃

• Creep-fatigue test data have been generated in air, 
sodium and vacuum. 

• Time fraction linear damage rule gives reasonable 
life prediction.

• Long-term tests are being continued.

Mod.9Cr-1Mo
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Strategies for extrapolation and 
verification

• Example: Extrapolation of creep strength
– Metallurgical investigation to support temperature 
acceleration 

– Investigation of newly developed extrapolation 
methodologies such as “region split method”
– Monitoring of integrity of materials to verify design margins

• Technologies to ensure integrity of materials during operation such 
as monitoring, surveillance and non-destructive examination 
technologies should also be explored in light of 60-year design. 

18

Metallurgical 
Investigation

Ex.
TTP diagram 
of “Z-phase”
for modified 
9Cr-1Mo steel

Modifie
d
9Cr-
1Mo

Modifie
d
9Cr-
1Mo

(K.Sawada et al., ISIJ International, Vol.47(2007) 733-739)



Fabrication technologies for 
products specific to JSFR
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316FR: Large 
scale forged ring 
for reactor vessel 
(photo: Monju)

Modified 9Cr-1Mo: Heat exchanger tubes

Modified 9Cr-1Mo: 
Large scale test forging 
for tubesheets of steam 
generators

• Fabrication technologies for products such as 
large-scale forgings and heat exchanger tubes are 
being developed by collaboration with Japanese 
steel manufacturers
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Code development for JSFR
• Technologies for Elevated Temperature Design 
Codes are being developed within the framework 
of FaCT project.

• They are reviewed by “All Japan” specialists.  
• Based on the above, codes for JSFR will be 
published as a 2016 version of the Japan Society of 
Mechanical Engineers (JSME) codes for fast 
breeder reactors.

• The codes will involve material strength standards, 
design code, and fitness-for-service code including 
in-service inspection requirements.



JSME Subgroup on
Elevated Temperature Design 

• JSME Sub Committee on Nuclear Power - Subgroup 
on Elevated Temperature Design is intensively 
working on the code development for JSFR
– WG on Material Standards
– WG on Design Standards
– TF on System Based Code
– TF on Fitness-for-Service Code
– TF on Seismic evaluation

• Code development closely tied with technology 
development in FaCT project. Codes also cover 
Monju.

21
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JSME Material code for JSFR
• Allowables for 316FR and Mod.9Cr-1Mo steels 
covering 60-year design will be determined based 
on statistical analysis of generated data and 
associated investigations

• Allowables for products specific to JSFR will also 
be included

• Equations that describe material properties such 
as creep strain evolution will be given

• Provide detailed technical backgrounds will be 
provided for further optimization



Summary
• Material development is intensively performed to 
achieve the innovative concepts of JSFR

• Basic material development has been completed
• Data acquisition particularly that in conditions 
close to practical applications is being continued 
and development of evaluation models are 
accordingly performed. 

• Fabrication technologies are being developed by 
collaboration with steel manufactures

• Codes and standards will be developed by 2016 
when licensing process for JSFR is envisioned.

• International collaboration will accelerate 
understanding and development of materials.
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Appendix



(a) Hexagonal tube welding

SUS316
PNC-FMS

(11Cr-ferritic steel) SUS316

EB or TIG welding

(b) Hexagonal cold-drawing
of pre-welded circular tubes

SUS316 PNC-FMS SUS316

Final heat treatment

Cold-drawing to Hexagonal shapeFinal heat treatment

SUS316PNC-FMS

WeldedWelded
partpart

Filler (INCONEL)TIG welding

�Adequate strength at FMS/316 dissimilar-welded part has already 
been proved by high-temp. tensile tests in both cases.

PNCPNC--FMS duct with SUS 316 short jointFMS duct with SUS 316 short joint


