International Conference on Fast Reactors and Related Fuel Cycles (FR09) Kyoto, Japan, December 7-11, 2009

Development of Structural Materials for JSFR

- Overview and Current Status -

Tai Asayama, Yuji Nagae, Takashi Wakai, Masaki Inoue, Takeji Kaito, Satoshi Otuka, Nobuchika Kawasaki and Masaki Morishita Japan Atomic Energy Agency

Background and Contents

- Development of new materials is an key issue to achieve innovative concepts of JSFR. R&Ds are being performed in an "All Japan" framework.
- Core materials
 - Oxide Dispersed Strengthened steel (ODS)
- Structural materials
 - 316FR (Low carbon nitrogen added 316SS)
 - Modified 9Cr-1Mo steel

JSFR - Innovative technologies -

- **Cost Competitiveness**
- Simplified HTS with 2-Loop Arrangement
- -Short piping with Modified 9Cr-1Mo steel
- Integrated heat exchanger and primary pump
- Compact and simple reactor block with **316FR**
- Fuel handling system
- SC Containment structure

Enhanced Availability - High bun-up fuel with ODS steel cladding

Prevention of Sodium Fire/Reaction: Double-walled Sodium Piping

High Reliability: Technologies for Inspection and repair tech under sodium

Enhanced Reactor Safety - Passive safety by self actuated shutdown system and natural circulation decay heat removal - Recriticality-free core

- Seismic isolation

Core materials

Target of ODS steel cladding development

Target Performance

High Burnup

⇒Discharge average burnup : 150 GWd/t emperatui

- Peak burnup : ~250 GWd/t
- Peak neutron dose : ~250 dpa

High Temperature

⇒Coolant outlet temperature : 823 K

- Cladding mid-wall temperature : ~973 K

Discharge average burnup (GWd/t)

- Ultimate tensile strength (UTS)
- Uniform elongation (UE)

- Internal creep rupture strength

:>300 MPa (973 K)

- :>1%
- : 120 MPa (973 K × 10⁴ hr)

Alloy design and phases for candidate ODS Steels

mass%	С	Cr	W	Ti	Y ₂ O	Excess O	
	М	Μ	S	D	<u> </u>	D	
9Cr-ODS	0.13	9.0	2.0	0.20	0.35	0.07	
12Cr-ODS	0.03	12.0	2.0	0.26	0.23	0.07	

M: Phase Control S: Solution Hardening D: Dispersion Hardening

Oxygen in Y₂O₃≒Excess Oxygen

Primary Candidate

9Cr-Martensitic

Fabrication, Irradiation Resistance

Equiaxed Martensitic Grains +Ferritic Grains (δ)

Secondary Candidate

12Cr-Fully Ferritic => Corrosion Resistance

Fully Re-crystallized Ferritic Grains

Manufacturing process of ODS pins

Powder Metallurgy Process

JAE/

Thin Wall Precise Tubing Process

Out-of pile creep rupture strength of ODS steels

✓ High-strength ODS steel cladding tube achieves the target out-of-pile creep strength, i.e. 120 MPa for 10,000 h at 973 K.

In-pile creep rupture strength of 9Cr-ODS steel

JAEA

✓ No irradiation-induced degradation of creep rupture strength of 9Cr-ODS steel in contrast to the modified SUS316.

Structural materials

Target of structural materials

development

Secondary Pump

Mod.9Cr-1Mo

Reactor Vessel and Internals = 316FR

Coolant Systems = Mod.9Cr-1Mo

> IHX = Mod.9Cr-1Mo

Primary and secondary piping systems = Mod.9Cr-1Mo

Reactor Vessel and internals = 316FR

• Coolant outlet temperature = 550 C

Steam

generators

• Design life = 60 years

Tube = Mod.9Cr-1Mo Vessel = Mod.9Cr-1Mo CSEJ (Bellows) = Mod.9Cr-1Mo

Tubesheet =

Mod.9Cr-1Mo

Steam generator (SG)

Current status and path forward

- R&Ds are progressing step by step towards licensing process:
 - Material development
 - Data acquisition and evaluation methods
 - Development of fabrication technologies for products for the JSFR
 - Codification for elevated temperature design
- R&Ds are based on the efforts being continued since before the FaCT project.

Material Development

• 316FR

- Developed in Japan within the specification of SUS316 (Type 316 SS) of Japanese Industrial Standards (JIS) with stronger requirements for carbon, nitrogen and phosphorus.
- Material development completed.

С	Si	Mn	Р	S	Ni	Cr	Мо	AI	Ν
≦0.02 0	≦1.00	≦2.00	0.020 0.045	≦0.03 0	10.00 14.00	16.00 18.00	2.00- 3.00	≦0.05	0.06— 0.12

- Mod.9Cr-1Mo steel
 - Basically, ASTM/ASME code material (Grade 91)
 - Material development completed

С	Si	Mn	Р	S	Ni	Cr	Мо	V	Nb	AI	Ν
0.08 <i>—</i> 0.12	0.20 <i>—</i> 0.50	0.30- 0.60	≦0.02 0	≦0.01 0	≦0.40	8.00— 9.50	0.85— 1.05	0.18 <i>—</i> 0.25	0.06 <i>—</i> 0.10	≦0.04	0.030 0.070

Data acquisition and development of evaluation methods

- Key factor: 60-year design at 550 C

 Acquisition of material data
 - Long-term creep, long-term creep-fatigue, environmental effects (aging, sodium, irradiation)
 - Base metals, welded joints
 - Modeling based on better understanding of degradation mechanisms
 - Creep-fatigue evaluation methods for welded joints
 - Possible "Type IV damages (Mod.9Cr-1Mo steel)" at long-term regions taken into account
 - Extrapolation based on models needs to be implemented in code development

Acquisition of long-term creep data

- Creep tests including long-terms ones have been performed and being continued, and data are stored in Database "SMAT" which has been developed by JAEA.
- Collaborative study with National Institute of Material Science (NIMS)

Acquisition of long-term creepfatigue data and evaluation

Mod.9Cr-1Mo

- Creep-fatigue test data have been generated in air, sodium and vacuum.
- Time fraction linear damage rule gives reasonable life prediction.
- Long-term tests are being continued.

Strategies for extrapolation and verification

- Example: Extrapolation of creep strength
 - Metallurgical investigation to support temperature acceleration

Metallurgical Investigation

TTP diagram of "Z-phase" for modified 9Cr-1Mo steel

(K.Sawada et al., ISIJ International, Vol.47(2007) 733-739)

- Investigation of newly developed extrapolation methodologies such as "region split method"
- Monitoring of integrity of materials to verify design margins
 - Technologies to ensure integrity of materials during operation such as monitoring, surveillance and non-destructive examination technologies should also be explored in light of 60-year design.

Fabrication technologies for products specific to JSFR

 Fabrication technologies for products such as large-scale forgings and heat exchanger tubes are being developed by collaboration with Japanese steel manufacturers

· Weight

Matorial

: 31 ton • Dimension : 7,160 OD x 7.060 ID x 3.485 H -SUSE304

316FR: Large scale forged ring for reactor vessel (photo: Monju)

Modified 9Cr-1Mo: Large scale test forging for tubesheets of steam generators

Modified 9Cr-1Mo: Heat exchanger tubes

Code development for JSFR

- Technologies for Elevated Temperature Design Codes are being developed within the framework of FaCT project.
- They are reviewed by "All Japan" specialists.
- Based on the above, codes for JSFR will be published as a 2016 version of the Japan Society of Mechanical Engineers (JSME) codes for fast breeder reactors.
- The codes will involve material strength standards, design code, and fitness-for-service code including in-service inspection requirements.

JSME Subgroup on Elevated Temperature Design

- JSME Sub Committee on Nuclear Power Subgroup on Elevated Temperature Design is intensively working on the code development for JSFR
 - WG on Material Standards
 - WG on Design Standards
 - TF on System Based Code
 - TF on Fitness-for-Service Code
 - **TF** on Seismic evaluation
- Code development closely tied with technology development in FaCT project. Codes also cover Monju.

JSME Material code for JSFR

- Allowables for 316FR and Mod.9Cr-1Mo steels covering 60-year design will be determined based on statistical analysis of generated data and associated investigations
- Allowables for products specific to JSFR will also be included
- Equations that describe material properties such as creep strain evolution will be given
- Provide detailed technical backgrounds will be provided for further optimization

Summary

- Material development is intensively performed to achieve the innovative concepts of JSFR
- Basic material development has been completed
- Data acquisition particularly that in conditions close to practical applications is being continued and development of evaluation models are accordingly performed.
- Fabrication technologies are being developed by collaboration with steel manufactures
- Codes and standards will be developed by 2016 when licensing process for JSFR is envisioned.
- International collaboration will accelerate understanding and development of materials.

Appendix

 Adequate strength at FMS/316 dissimilar-welded part has already been proved by high-temp. tensile tests in both cases.